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Mitochondria are highly dynamic organelles that con-
tinuously change their shape through frequent fusion,
fission and movement throughout the cell, and these
dynamics are crucial for the life and death of the
cells as they have been linked to apoptosis, maintenance
of cellular homeostasis, and ultimately to neurologic
disorders and metabolic diseases. Over the past
decade, a growing number of novel proteins that regu-
late mitochondrial dynamics have been discovered.
Large GTPase family proteins and their regulators
control these aspects of mitochondrial dynamics. In
this review, we briefly summarize the current knowledge
about molecular machineries regulating mitochondrial
fusion/fission and the role of mitochondrial dynamics
in cell pathophysiology.
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m-AAA, matrix AAA protease; MAM,
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fission factor; Mfn1, Mitofusin1; Mfn2, Mitofusin2;
MIB, mitofusin binding protein; Mmm,
mitochondrial morphology maintenance; mtDNA,
mitochondrial DNA; Oma1, overlapping activity
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membrane; Opa1, Optic atrophy1; RING, Really
Interesting New Gene; RNAi, RNA interference;
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Mitochondria are double-membrane bound organelles
that are essential for numerous cellular processes such
as aerobic ATP generation, lipid biosynthesis and
haem and iron-sulphur cluster biogenesis (1). They
are now recognized as highly dynamic organelles that
move within cells via microtubules or microfilaments
and continuously fuse and divide in healthy cells, and
these dynamic morphologic changes are essential not
only for the maintenance of respiratory activity and
mitochondrial DNA (mtDNA), but also for the con-
trol of cellular processes such as embryonic devel-
opment, neuronal plasticity, apoptosis or calcium
signalling (Fig. 1) (2). Mitochondrial fission contrib-
utes not only to the proper distribution of mitochon-
dria in response to the local demand for ATP, but also
to the elimination of damaged mitochondrial frag-
ments through mitophagy (autophagy for mitochon-
dria), whereas mitochondrial fusion facilitates the
exchange of mtDNA and other vital components be-
tween mitochondria for the maintenance of functional
mitochondria. Mitochondrial fusion and fission are
controlled by four high molecular weight GTPases
conserved from yeast to mammals: mitofusins Mfn1
and Mfn2 (Fzo1 in yeast) in mitochondrial outer mem-
brane (OMM) fusion; Opa1 (a cause gene product of
optic atrophy type I; Mgm1 in yeast) in mitochondrial
inner membrane (IMM) fusion and cristae organiza-
tion; and Drp1 (Dnm1 in yeast) in mitochondrial fis-
sion, indicating that the fundamental mechanisms
controlling mitochondrial dynamics have been main-
tained during evolution. Abnormal mitochondrial
dynamics often cause neuronal synaptic loss and cell
death in several human neurologic diseases, such as
Alzheimer’s disease, Parkinson’s disease and
Huntington’s disease (3). Furthermore, mitochondrial
dynamics are suggested to be responsible for the
pathologic conditions associated with oxidative stress
and have also been linked to ageing.

Mitochondrial fusion machinery and
regulation

Mitochondrial fusion with closely apposed mitochon-
dria is a complex regulatory process involving multiple
proteins that fuse both the OMM and IMM of each
mitochondrion. Although fusion reaction between
OMMs of apposed mitochondria and the subsequent
fusion between IMMs are normally highly synchro-
nized, the two processes can be functionally uncoupled
(4, 5). In cultured cells, the lack of mitochondrial
fusion leads to a defect in oxidative phosphorylation,
because fusion-deficient mitochondria cannot ex-
change contents, they are unable to restore and/or
maintain the mtDNA-encoded proteins required for F

e
a
tu

re
d

A
rt

ic
le

J. Biochem. 2011;149(3):241–251 doi:10.1093/jb/mvr002

� The Authors 2011. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved 241

 at C
hanghua C

hristian H
ospital on Septem

ber 26, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


electron transport, thus becoming respiration-defective
(Fig. 1) (6).

As mentioned above, three large GTPase proteins,
Mfn1, Mfn2 and Opa1 mediate mammalian mito-
chondrial fusion (7�10). Mfn1 and Mfn2 are anchored
to the OMM with both a large N-terminal GTPase
domain and C-terminal coiled-coil domain exposed
to the cytosol, and mediate OMM fusion in a
GTPase-dependent manner. Mutations in Mfn2 cause
Charcot�Marie-Tooth disease type 2A (CMT2A)
(11�13). The mechanism by which Mfn2 mutations
cause CMT2A is not fully elucidated, but there are
many loss of function Mfn2 mutations found in
CMT2A within the GTPase domain. Both Mfn1
and Mfn2 form homo- or hetero-protein complexes
(7, 14, 15). Such physical interactions between mitofu-
sins on opposing mitochondria serve to tether and
possibly to fuse the OMMs. Knockout of Mfn1 results
in small fragmented mitochondria broadly dispersed
within the cell, whereas knockout of Mfn2 leads to
large fragmented mitochondria concentrated near the
nucleus (7). Consistent with these distinct knock-
out phenotypes, purified recombinant Mfn1 exhibits

higher GTPase activity than Mfn2 (14). Thus, the
two mitofusins seemed to have distinct roles in mito-
chondrial OMM fusion; Mfn1 is thought to be respon-
sible for the initial GTP-dependent OMM tethering. It
is not clear how Mfn1 and Mfn2 promote OMM
fusion beyond the initial tethering step. Mfn2 is also
enriched in the mitochondria-associated membranes
(MAM) of the endoplasmic reticulum (ER), where it
interacts with Mfn1 and Mfn2 on the mitochondria to
form interorganellar bridges (16, 17). Close contacts
between mitochondria and the ER are physiologically
important for Ca2þ signalling, metabolite exchange,
and, therefore, the regulation of mitochondrial metab-
olism and apoptosis. Because the ER�mitochondria
contacts are still formed in mitofusin-deficient cells,
however, other proteins may also participate in the
ER�mitochondria contacts. In yeast, in this relation,
the ER�mitochondria tethering complex, the ERMES
complex comprising Mdm34, Mdm10, Mdm12 and
Mmm1, is reported to form the contacts involved in
phospholipid exchange (18, 19). The role of Mfn2 in
the formation of the ER�mitochondria contacts and
their functional significance remain to be further
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Fig. 1 Overview of mitochondrial dynamics and homeostasis. Mitochondrial morphology is maintained by fusion and fission. Excessive mito-
chondrial fission often causes the generation of depolarized (respiratory inactive) mitochondria. Although the mildly depolarized mitochondrial
fragments fuse back with the active mitochondria and recover the respiratory activity, severely depolarized mitochondrial fragments cannot fuse
back with the reticulum. Therefore, mitochondrial fusion prevents the loss of mtDNA nucleoids and contributes to maintain mitochondrial
respiratory activity. Dysfunctional mitochondria return to the cell soma and are eliminated by the autophagy system, named mitophagy.
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Atrophy, PD: Parkinson’s disease.
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elucidated. In addition to these two players, a 55-kDa
mitofusin binding protein (MIB) was identified as a
fusion regulator. MIB is a member of the medium-
chain dehydrogenase/reductase protein superfamily
and has a conserved coenzyme-binding domain. MIB
overexpression in HeLa cells induces mitochondrial
fragmentation, whereas MIB silencing by RNA inter-
ference (RNAi) leads to the formation of elongated
mitochondria (20). Therefore, MIB functions as a
negative regulator of mitofusin proteins. To under-
stand the molecular mechanisms of OMM fusion in
detail, further identification of the Mfn1/Mfn2-
interacting proteins is required.

Opa1 is another key molecule essential for mito-
chondrial IMM fusion and cristae remodelling.
Mutations in Opa1 cause autosomal dominant optic
atrophy, a degenerative disease of the optic nerve
(3, 8�10). There are eight Opa1 splice variants, which
are all synthesized as precursor proteins with the mito-
chondrial localization sequence in the N-termini and
the following hydrophobic stretches that are respon-
sible for sorting the protein into the IMM (21�23).
During mitochondrial import, the mitochondrial local-
ization sequence of Opa 1 precursors is removed by
mitochondrial processing peptidase to form L-forms
(21). They are anchored to the IMM with the
GTPase domain exposed to the mitochondrial inter-
membrane space (IMS), and are subsequently pro-
cessed either in the IMS to produce S-forms by the
intermembrane space AAA protease (i-AAA protease)
YME1L or in the matrix by m-AAA protease Afg3L1,
Afg3L2 or Paraplegin of mice mitochondria (Afg3L2
and Paraplegin for human mitochondria) depending
on whether the process site localizes in the IMS (for
splice variants carried the exon 5b-encoded region) or
in the matrix (for the other splice variants), respect-
ively (24�28). Prohibitins (PHB1 and PHB2), the evo-
lutionally conserved IMM proteins that function as the
protein- and lipid-scaffolds and are essential for cell
proliferation and development, regulate Opa1 process-
ing (29�30). Interestingly, defective phenotypes of
PHB knockout cells (growth defect, mitochondrial
fragmentation, susceptibility to apoptosis and defect-
ive cristae morphogenesis) are all complemented by
exogenous expression of the Opa1 L-form, indicating
that the PHB complex is epistatic to Opa1 processing
(29). Mutations in the GTPase domain lead to the frag-
mented mitochondria, indicating that GTP hydrolysis
is essential for mitochondrial fusion activities (31).
Many Opa1 mutations found in the dominant optic
atrophy are detected in the GTPase domain. The
IMM-exposed region locating next to the GTPase
domain is involved in the tetramerization and higher
order self-assembly of Opa1 (32). Under normal con-
ditions, L- and S-forms are both essential for sufficient
mitochondrial fusion (27, 33). It is demonstrated in
yeast that l-Mgm1 functions as the membrane anchor
for s-Mgm1 and the GTPase-defective l-Mgm1 mutant
is functional (34). In this relation, other report demon-
strated that l- and s-Mgm1 both exist as inactive
GTPase monomers in the absence of membrane, but
together in trans they form a functional dimer in a
cardiolipin-dependent manner that is the building

block for higher order assemblies (35). Importance of
cardiolipin in stimulating GTPase and assembly of
Mgm1 and Opa1 is also reported (36, 37).

Loss of the mitochondrial membrane potential by a
protonophore carbonyl cyanide m-chlorophenyl
hydrazone (CCCP) induces significant fragmentation
of mitochondria concomitant with a rapid conversion
of L-Opa1 to S-Opa1. The loss of mtDNA, ATP defi-
ciency or apoptosis primes similar processing, and this
‘induced’ Opa1 processing is mediated by Oma1 (for
overlapping activity with m-AAA protease), a protease
with multiple membrane-spanning segments and a
zinc-binding motif (38�40). Neither knockdown nor
overexpression of Oma1 affects mitochondrial morph-
ology in mouse embryonic fibroblast cells, suggesting
that Oma1 is dispensable for the balanced formation of
L-forms and S-forms by constitutive cleavage under
normal conditions. The regulation of Opa1 activities
mediated by Oma1 will likely affect tissue development
or the progression of neurodegenerative diseases. Opa1
is also reported to be involved in maintenance of the
cristae structure; knockdown of Opa1 induces disinte-
gration of the cristae structure concomitant with cyto-
chrome c release and apoptosis induction (25, 41, 42).

Molecular insights into Drp1 actions during
mitochondrial fission

Drp1 is a member of the conserved dynamin GTPase
superfamily, which includes a broad range of mem-
brane fission proteins. It is a cytosolic protein with
an N-terminal GTPase domain thought to provide
mechanical force, a dynamin-like middle domain and
a GTPase effector domain (GED) located in the
C-terminal region. A dominant-negative middle
domain mutation (A395D) in Drp1 has been reported
in a lethal disorder with microcephaly, abnormal brain
development, optic atrophy and hypoplasia (43). The
cells derived from this patient showed aberrant mito-
chondrial elongation (43). Drp1 mainly localizes in the
cytosol, and during mitochondrial fission, translocates
from the cytosol to prospective fission sites on the
mitochondria (Fig. 2A) (44�46). In vitro studies as
well as studies of yeast Dnm1 revealed that Dnm1 or
Drp1 assembles, like dynamin, into self-assembled
higher-order structures that wrap around the mito-
chondrial tubule (44, 47, 48). These spiral higher-order
structures are thought to constrict and eventually sever
the mitochondrial membrane by a GTP hydrolysis-
dependent mechanism. Time-lapse imaging of the
GFP-tagged Drp1 shows that mitochondrial tubules
divide at sites where these punctate structures are
found (44, 49). The GTP-binding defective mutant
(K38A) sequesters endogenous Drp1 into uncharacter-
ized aggregated or dotted structures, thus inhibiting its
localization on the mitochondrial fission sites to act as
a dominant negative mutant (44, 47). Intermolecular
interactions between the N-terminal GTPase domain
and C-terminal GED are also important for Drp1
self-assembly and functional regulation (50, 51). The
regulation of IMM scission as well as the mechanisms
synchronizing scissions of the IMM and the OMM are
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not yet known. The IMM-localized MTP18 is identi-
fied as a transcriptionally regulated target of the phos-
phatidylinositol 3-kinase signalling and regulates
mitochondrial fission coupled with the action of
Drp1 at the OMM (52, 53). Although the mechanism
of MTP18 in the IMM fission is unclear at present, the
identification of its interacting partners will help
understanding the molecular mechanisms that syn-
chronize scissions of the IMM and OMM.

Fis1 is a C-tail anchored OMM protein with its
N-terminal multiple tetratricopeptide repeat (TPR)
motif exposed to the cytoplasm (54, 55). In yeast,
Fis1 is required for Dnm1 recruitment (Fig. 2A).
During mitochondrial fission, Fis1 transiently interacts
via cytosolic adaptor proteins Mdv1/Caf4 with Dnm1

by its TPR motif, suggesting its function as the mito-
chondrial Dnm1 receptor (56, 57). In mammals, Fis1
has also been identified in mitochondria (hFis1 for
human Fis1) and is thought to be involved in recruiting
Drp1 to mitochondria as in yeast through direct or
indirect interactions (55). The actual function of
hFis1, however, remains enigmatic, because the
Mdv1/Caf4-like adaptor proteins have not been iden-
tified, hFis1 localizes throughout the OMM in contrast
to the punctate localization of Drp1 and mitochon-
drial recruitment of Drp1 is not affected by hFis1-
knockdown (Fig. 2B) (58). Whether or not hFis1
induces mitochondrial fission is even controversial.
Yeast Fis1 is well established to mediate mitochondrial
fission, and similarly, plant Fis1 is required for
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mitochondrial fission (59). The deletion of Fis1 and
Fis2 in Caenorhabditis elegans, however, does not
result in any detectable mitochondrial defects (60).
Moreover, hFis1 cannot rescue the phenotype of
yeast fis1D cells, indicating that the two proteins are
structurally divergent or act through different mechan-
isms (54). Recently, we reported that the mitochondrial
morphology and the mitochondrial recruitment of
Drp1 remain unaffected in hFis1-knockout cells (61).
Although previous studies showing mitochondrial fis-
sion used hFis1 overexpression or RNAi for hFis1 in
living cells, these manipulations sometimes induce
non-physiologic stress in the cells, which seemed to
lead to mitochondrial morphology changes.
Therefore, caution should be taken when interpreting
data from overexpressing membrane proteins or RNAi
used in previous studies. Further studies are needed to
clarify the functional relevance of hFis1 in
Drp1-dependent mitochondrial morphology
regulation.

Ganglioside-induced differentiation-associated pro-
tein 1 (GDAP1) is another mitochondrial fission
factor located at the OMM (62). GDAP1 is involved
in the maturation of gangliosides. GDAP1 mutation
leads to the peripheral neuropathy Charcot�Marie-
Tooth disease (CMT), affecting Schwann cells, the
myelinating glia of the peripheral nervous system,
and neurons (63). Although it is not clear how
GDAP1 is involved in mitochondrial fission, these
data suggest the importance of membrane lipid
compositions such as gangliosides in mitochondrial
fission.

Mff, a key player in Drp1-dependent
mitochondrial fission

Despite extensive studies, the mechanisms by which
cytoplasmically localized Drp1 is activated and re-
cruited to the prospective mitochondrial fission sites
have remained unclear. Mitochondrial fission factor
(Mff) is a C-tail anchored protein on the OMM that
recently identified by the Drosophila RNAi library
search for mitochondrial morphology alterations
(64). Mammalian mitochondria contain an Mff ortho-
logue and silencing this factor by RNAi induces mito-
chondrial elongation in mammalian cells. The specific
role of Mff in mitochondrial fission, however, remains
unknown. To better elucidate its role, we first exam-
ined whether Mff RNAi affects the mitochondrial
recruitment of Drp1. Endogenous Drp1, observed as
dotted structures on mitochondria, was clearly
decreased and was dispersed in the cytoplasm in Mff
RNAi cells concomitant with mitochondrial network
extension (Fig. 2B). In contrast, Mff overexpression
induced mitochondrial fragmentation, concomitant
with increased Drp1 recruitment to the mitochondria
(61). Consistent with these observations, both in vitro
and in vivo experiments demonstrated that Mff transi-
ently interacts with Drp1 through its N-terminal cyto-
plasmic region (Fig. 2C). Furthermore, Mff mostly
co-localizes with the Drp1 foci on the OMM in
marked contrast to the uniform localization of hFis1

in the OMM (61). Furthermore, conditional knockout
of hFis1 in colon carcinoma cells revealed that it is
dispensable for mitochondrial fission (61). These
observations indicate that Mff functions as a Drp1 re-
ceptor to mediate mitochondrial fission. Drp1 might
self-assemble via its ability to homo-oligomerize at
the Mff-containing foci on the mitochondrial surface,
forming spiral structures around the mitochondrial
tubules. After this process, hFis1 or unidentified Mff-
interacting proteins might affect the assembly of the
fission machinery, leading to membrane constrictions
or lipid remodelling and eventually to membrane scis-
sion. In contrast to the conservation of Fis1 through
various species, there are no obvious homologues
of Mdv1/Caf4 in metazoans, and Mff appears to be
restricted to metazoans. Mammalian mitochondria
seem to adopt fission mechanisms that are distinct
from those of yeast or plants (Fig. 2A). The mechan-
istic details of these processes and their GTP-
dependence remain key questions to be analysed in
the future.

Regulation of Drp1 by posttranslational
modifications

Various stressors outside or inside cells induce mito-
chondrial fission to remodel mitochondria and cellular
function. During apoptosis, cytoplasmic Drp1 is trans-
located to the mitochondria and induces mitochondrial
fragmentation prior to caspase activation by the
release of cytochrome c (65, 66). Such increased fission
events are also important for autophagic clearance
of depolarized (or dysfunctional) mitochondria or for
proper segregation of mitochondria into daughter cells
during mitosis (67, 68). Overexpression of wild-type
Drp1 does not lead to mitochondrial fragmentation,
suggesting that a simple alteration of Drp1 levels
does not change mitochondrial fission but regulation
of Drp1 properties, such as mitochondrial transloca-
tion, higher order assembly or GTPase activity is
rather critical. In this context, posttranslational modi-
fications are implicated as regulatory mechanisms
during mitochondrial fission (Fig. 2A).

During mitosis, rat Drp1 is activated by the Cdk1/
cyclin B-mediated phosphorylation of Ser585 (Ser616
for human Drp1) in the GED domain. This mitotic
phosphorylation promotes Drp1-dependent mitochon-
drial fission and facilitates the proper distribution and
segregation of mitochondria into daughter cells (69).
The exact mechanisms linking Drp1 phosphorylation
at Ser585 to increased fission activity remain to be
determined. A serine residue within the GED domain
(Ser637 for human Drp1; Ser656 for rat Drp1) is phos-
phorylated by protein kinase A in HeLa and PC12
cells. This phosphorylation inhibits mitochondrial fis-
sion through the inhibition of intra-molecular inter-
action between GTPase and GED domains, GTPase
activity and eventually mitochondrial recruitment of
Drp1 (70). In this context, calcineurin dephosphory-
lates Ser637 and stimulates the translocation of Drp1
to the mitochondria (71, 72). In contrast, Ca2þ signal-
ling activates Ca2þ/calmodulin-dependent protein
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kinase Ia to phosphorylate Ser637 and increases mito-
chondrial translocation of Drp1 through increasing the
Drp1 binding affinity for hFis1 in hippocampal neu-
rons (73). Thus, phosphorylation of Drp1 at the same
GED domain residues is likely to have opposite effects
on the mitochondrial fission activity in different cells
or tissues.

S-Nitrosylation is a ubiquitous protein modification
in redox-based signalling. b-Amyloid protein, a key
mediator of Alzheimer’s disease, stimulates nitric
oxide production to cause S-nitrosylation of human
Drp1 at Cys644 within the GED domain, which en-
hances GTPase activity and Drp1 oligomer formation
in association with excessive mitochondrial fission in
neurons, leading to synaptic loss and neuronal damage
in the brains of Alzheimer’s disease patients (74). A
mutation of Cys644 prevents mitochondrial fragmen-
tation and blocks the neurotoxicity induced by nitric
oxide or b-amyloid protein (74).

The small ubiquitin-like modifier (SUMO) protein
also affects Drp1 activity. Overexpression of SUMO1
stabilizes Drp1 in a Bax/Bak-dependent manner on the
mitochondrial membrane and induces mitochondrial
fission, suggesting that sumoylation is a step in the
regulation of Drp1 during early apoptosis progression
(46). Mitochondrial SUMO E3 ligase (MAPL) has
been identified as SUMO E3 ligase for Drp1 (75).
Conversely, overexpression of the Sumo protease
SENP5 decreases Drp1 sumoylation and rescues
SUMO1-induced mitochondrial division (76).
Neuspiel et al. (77) reported thatMAPL is incorporated
in previously uncharacterized mitochondria-derived
vesicles that bud from mitochondria and are trans-
ported to peroxisomes. Communication with peroxi-
somal membranes might thus influence mitochondria
morphology or lipid biosynthesis (78).

In addition to sumoylation, ubiquitination regulates
Drp1 activity. March5 (also known as MITOL), a
mitochondria-associated RING-finger E3 ubiquitin
ligase, ubiquitinates Drp1 on the OMM, although the
effect of March5/MITOL-dependent ubiquitination of
Drp1 on mitochondrial dynamics remains controver-
sial. March5/MITOL silencing or overexpression of
the March5/MITOL mutant lacking ubiquitin ligase
activity induced mitochondrial fragmentation in pre-
vious studies (79, 80). Karbowski et al. (45), however,
demonstrated later that March5/MITOL silencing, as
well as overexpression of the RING-inactive March5/
MITOL mutant, induces abnormal mitochondrial
accumulation of Drp1 in association with abnormal
mitochondrial elongation and their interconnections.
In addition, March5/MITOL might play a more gen-
eral role in the quality control of mitochondria by
ubiquitinating mutated, damaged or misfolded pro-
tein accumulated in the OMM, as was observed for
a mutated version of SOD or expanded poly-Q pro-
teins (81, 82). Thus, whether and how March5/
MITOL contributes to mitochondrial dynamics is an
important issue for future studies.

Different effects induced by the same modification
might depend on circumstances such as where and
when the effects occur within the cells or the cell
type. Although the exact mechanism of Drp1

regulation via phosphorylation, S-nitrosylation, ubi-
quitination or sumoylation is unclear, it is likely that
posttranslational modifications of Drp1 both posi-
tively and negatively regulate its function in mitochon-
drial dynamics.

Physiologic role of mitochondrial dynamics

Mitochondria accumulate in sites where high amounts
of energy are required or where Ca2þ buffering is
required (Fig. 1). The proper regulation of mitochon-
drial dynamics is therefore particularly important in
highly polarized cells such as neurons, due to their
high demand for energy at the synapses as well as
axonal transport and calcium homeostasis for normal
synaptic activities; functional mitochondria are sup-
plied to the synaptic area along microtubules by kine-
sin (anterograde transport), whereas dysfunctional
mitochondria are returned to the soma by dynein
(retrograde transport) (83�85) to restore activity by
fusion with the respiratory active mitochondria or to
be eliminated by mitophagy (mitochondria-specific
autophagy) (Fig. 1). Changes in mitochondrial morph-
ology are thus important for transport to the appro-
priate destination. Milton 1 and 2 localize on the
mitochondrial surface and interact with kinesin heavy
chain to mediate the axonal transport of mitochondria
to the synapse along microtubules, acting as an adap-
tor or regulator of mitochondrial transport (86, 87).
The mitochondrial Rho-GTPase protein Miro is a pro-
tein that interacts with Milton, based on studies using
a yeast two-hybrid system (88, 89). Miro is an OMM
protein with two cytoplasmic GTPase domains and
two Ca2þ binding EF hand motifs. Loss of Miro in
flies results in a lack of axonal mitochondrial transport
and the accumulation of mitochondria within the neur-
onal cell bodies (88). Based on its motif structures,
Miro is a potential regulator of mitochondrial motility;
a high concentration of Ca2þ decreases mitochondrial
motility, leading to the accumulation of mitochondria
near areas of high energy demand such as active syn-
apses. Thus, Miro is another essential component of
the machinery for mitochondrial transport and has a
crucial role in neuronal function.

Key proteins of mitochondrial fusion and fission
play important roles in the regulation of apoptosis,
and mutations or abnormal expression of these pro-
teins are associated with neurodegenerative disorders
(3, 90). We and others previously reported that Drp1
deficiency results in an irrelevant mitochondrial distri-
bution within neuronal cells by inducing the aggrega-
tion of enlarged mitochondria around the nucleus,
which may prevent neurite and synapse formation
probably due to an inefficient energy supply, inefficient
buffering of local Ca2þ or inefficient formation of syn-
aptic vesicle pools (91, 92). Mitochondrial fission likely
contributes to the proper distribution of the mitochon-
dria along cytoskeletal tracks, as well as to facilitate
the equal segregation of mitochondria into daughter
cells during cell division.

Because mitochondrial fusion leads to the exchange
of contents including mtDNA to complement
damaged contents, mitochondrial fusion contributes
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to maintain the functional oxidative phosphoryl-
ation system (Fig. 1) (6). In contrast to fusion, the
role of fission in mitochondrial function is not well
elucidated. Mitochondrial fission segregates depolar-
ized mitochondrial segments and the dysfunctional
mitochondria are sequestered from respiration-active
mitochondria within the cells and are then eliminated
by mitophagy (Fig. 1) (67, 68, 93).

It was recently demonstrated that cause gene prod-
ucts of Parkinson’s disease, PTEN-induced mito-
chondrial protein kinase 1 (PINK1) and cytoplasmic
ubiquitin E3 ligase Parkin mediate mitophagy
(94, 95, 96). Loss of the mitochondrial membrane
potential compromises the degradation of otherwise
unstable PINK1 on the OMM, which leads to the
recruitment of Parkin to initiate an autophagy cascade.
In addition, a recent report demonstrated that Mfn1
andMfn2 are ubiquitinated by Parkin uponmembrane -
depolarization and degraded by proteasome through a
AAAþ ATPase p97, thereby preventing fusion of
depolarized mitochondria and promoting mitophagy
(97). In this relation, dissipation of mitochondrial mem-
brane potential causes the conversion of L-OPA1 to the
S-form, which prevents damaged mitochondria from
further fusion reactions (21). Thus, the Parkin-PINK1
system is a mitochondrial quality control system to
monitor damaged or uncoupled mitochondria generat-
ing excessive reactive oxygen species (3, 98, 99) and dys-
function of this mechanism is a possible cause of
Parkinson’s disease (100, 101, 102). It is reported that
polyubiquitination of VDAC1 is required for the rec-
ognition by LC3 of autophagosomal membrane
through adaptor protein p62 (103), although the signifi-
cance of this reaction remains to be confirmed. As it is
thought that mitochondrial fission is related to the pro-
gression of mitophagy, inhibition of mitochondrial fis-
sion by the dominant negative mutant of Drp1 or
specific inhibitor of Drp1-GTPase mdivi-1 comprom-
ises Parkin-PINK1 dependent mitophagy (104).
Together, mitochondrial fusion and fission are more
likely to be involved in mitochondrial quality control
in healthy cells. Further experiments are necessary to
elucidate precise molecular mechanism of the Parkin-
PINK1-dependent mitophagy.

Perspectives

Recent advances in live cell imaging revealed that
mitochondria are highly dynamic through continuous
fusion and fission as well as movement along the cyto-
skeleton within the cells. Mitochondrial fusion and fis-
sion have important roles not only in the modulation
of mitochondrial morphology but also in other bio-
logic processes, including bioenergetics, cellular metab-
olism, mitochondrial maintenance, synaptic integrity
and neuronal cell death. Over the past decade, al-
though a significant amount of relevant data has accu-
mulated regarding the identification of proteins
modulating mitochondrial dynamics and their molecu-
lar function, characterization of the coordination and
regulation of these proteins is only preliminary. Several
fundamental questions, such as the exact role of the
mitochondrial shape proteins and the coordination of

fusion and fission, remain unsolved. A number of stu-
dies have demonstrated that mitochondrial morph-
ology and its physiologic function are different based
on the cell-type or tissue. These variations and the
cell-type specificity of mitochondrial dynamics might
be related to specific cellular functions, such as in neur-
onal cells. Therefore, learning how and the degree to
which mitochondrial dynamics influence cell-specific
functions in various tissues continues to be a challen-
ging task. Future research to investigate the complex
crosstalk between mitochondrial dynamics and their
physiologic function are likely to provide exciting
breakthroughs in the fields of cell biology and for clin-
ical medicine.
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Vance, J.M. (2004) Mutations in the mitochondrial
GTPase mitofusin 2 cause Charcot-Marie-Tooth neur-
opathy type 2A. Nat. Genet. 36, 449�451

12. Lawson, V.H., Graham, B.V., and Flanigan, K.M.
(2005) Clinical and electrophysiologic features of
CMT2A with mutations in the mitofusin 2 gene.
Neurology 65, 197�204

13. Cartoni, R. and Martinou, J.C. (2009) Role of mito-
fusin 2 mutations in the physiopathology of Charcot-
Marie-Tooth disease type 2A. Exp. Neurol. 218,
268�273

14. Ishihara, N., Eura, Y., and Mihara, K. (2004) Mitofusin
1 and 2 play distinct roles in mitochondrial fusion reac-
tions via GTPase activity. J. Cell Sci. 117, 6535�6546

15. Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H.,
McCaffery, J.M., and Chan, D.C. (2004) Structural
basis of mitochondrial tethering by mitofusin complexes.
Science 305, 858�862

16. de Brito, O.M. and Scorrano, L. (2008) Mitofusin 2
tethers endoplasmic reticulum to mitochondria. Nature
456, 605�610

17. Merkwirth, C. and Langer, T. (2008) Mitofusin 2 builds
a bridge between ER and mitochondria. Cell 135,
1165�1167

18. Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M.,
Nunnari, J., Weissman, J.S., and Walter, P. (2009) An
ER-mitochondria tethering complex revealed by a syn-
thetic biology screen. Science 325, 477�481

19. Kornmann, B. and Walter, P. (2010) ERMES-mediated
ER-mitochondria contacts: molecular hubs for the regu-
lation of mitochondrial biology. J. Cell Sci. 123,
1389�1393

20. Eura, Y., Ishihara, N., Oka, T., and Mihara, K. (2006)
Identification of a novel protein that regulates mitochon-
drial fusion by modulating mitofusin (Mfn) protein func-
tion. J Cell Sci. 119, 4913�4925

21. Ishihara, N., Fujita, Y., Oka, T., and Mihara, K. (2006)
Regulation of mitochondrial morphology through pro-
teolytic cleavage of OPA1. EMBO J. 25, 2966�2977

22. Olichon, A., Elachouri, G., Baricault, L., Delettre, C.,
Belenguer, P., and Lenaers, G. (2007) OPA1 alternate
splicing uncouples an evolutionary conserved function
in mitochondrial fusion from a vertebrate restricted func-
tion in apoptosis. Cell Death Differ. 14, 682�692

23. Delettre, C., Griffoin, J.M., Kaplan, J., Dollfus, H.,
Lorenz, B., Faivre, L., Lenaers, G., Belenguer, P., and
Hamel, C.P. (2001) Mutation spectrum and splicing vari-
ants in the OPA1 gene. Hum. Genet. 109, 584�591

24. McQuibban, G.A., Saurya, S., and Freeman, M. (2003)
Mitochondrial membrane remodelling regulated by a
conserved rhomboid protease. Nature 423, 537�541

25. Cipolat, S., Rudka, T., Hartmann, D., Costa, V.,
Serneels, L., Craessaerts, K., Metzger, K., Frezza, C.,
Annaert, W., D’Adamio, L., Derks, C., Dejaegere, T.,
Pellegrini, L., D’Hooge, R., Scorrano, L., and De
Strooper, B. (2006) Mitochondrial rhomboid PARL
regulates cytochrome c release during apoptosis via
OPA1-dependent cristae remodeling. Cell 126, 163�175

26. Duvezin-Caubet, S., Koppen, M., Wagener, J., Zick, M.,
Israel, L., Bernacchia, A., Jagasia, R., Rugarli, E.I.,
Imhof, A., Neupert, W., Langer, T., and Reichert, A.S.
(2007) OPA1 processing reconstituted in yeast depends
on the subunit composition of the m-AAA protease in
mitochondria. Mol. Biol. Cell. 18, 3582�3590

27. Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan,
D.C. (2007) A1 processing controls mitochondrial fusion
and is regulated by mRNA splicing, membrane potential,
and Yme1L. J. Cell Biol. 178, 749�755

28. Guillery, O., Malka, F., Landes, T., Guillou, E.,
Blackstone, C., Lombès, A., Belenguer, P., Arnoult, D.,
and Rojo, M. (2008) Metalloprotease-mediated OPA1
processing is modulated by the mitochondrial membrane
potential. Biol. Cell 100, 315�325

29. Merkwirth, C., Dargazanli, S., Tatsuta, T., Geimer, S.,
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